
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers

Yawar Siddiqui1 Antonio Alliegro2 Alexey Artemov1

Tatiana Tommasi2 Daniele Sirigatti3 Vladislav Rosov3 Angela Dai1 Matthias Nießner1

Technical University of Munich1 Politecnico di Torino2 AUDI AG3

Figure 1. Our method creates triangle meshes by autoregressively sampling from a transformer model that has been trained to produce
tokens from a learned geometric vocabulary. These tokens can then be decoded into the faces of a triangle mesh. Our method generates
clean, coherent, and compact meshes, characterized by sharp edges and high fidelity.

Abstract

We introduce MeshGPT, a new approach for generat-
ing triangle meshes that reflects the compactness typical of
artist-created meshes, in contrast to dense triangle meshes
extracted by iso-surfacing methods from neural fields. In-
spired by recent advances in powerful large language mod-
els, we adopt a sequence-based approach to autoregres-
sively generate triangle meshes as sequences of triangles.
We first learn a vocabulary of latent quantized embeddings,
using graph convolutions, which inform these embeddings
of the local mesh geometry and topology. These embeddings
are sequenced and decoded into triangles by a decoder, en-
suring that they can effectively reconstruct the mesh. A
transformer is then trained on this learned vocabulary to
predict the index of the next embedding given previous em-
beddings. Once trained, our model can be autoregressively
sampled to generate new triangle meshes, directly gener-
ating compact meshes with sharp edges, more closely imi-
tating the efficient triangulation patterns of human-crafted
meshes. MeshGPT demonstrates a notable improvement
over state of the art mesh generation methods, with a 9%
increase in shape coverage and a 30-point enhancement in
FID scores across various categories.

1. Introduction
Triangle meshes are the main representation for 3D geom-
etry in computer graphics. They are the predominant rep-
resentation for 3D assets used in video games, movies, and

virtual reality interfaces. Compared to alternative 3D shape
representations such as point clouds or voxels, meshes pro-
vide a more coherent surface representation; they are more
controllable, easier to manipulate, more compact, and fit di-
rectly into modern rendering pipelines, attaining high visual
quality with far fewer primitives. In this paper, we tackle the
task of automated generation of triangle meshes, streamlin-
ing the process of crafting 3D assets.

Recently, 3D vision research has seen great interest in
generative 3D models using representations such as vox-
els [3, 62], point clouds [37, 67, 68], and neural fields [14,
19, 31, 35, 41]. However, these representations must then
be converted into meshes through a post-process for use in
downstream applications, for instance by iso-surfacing with
Marching Cubes [36]. Unfortunately, this results in dense,
over-tessellated meshes that often exhibit oversmoothing
and bumpy artifacts from the iso-surfacing, as shown in Fig-
ure 2. In contrast, artist-modeled 3D meshes are compact in
representation, while maintaining sharp details with much
fewer triangles.

Thus, we propose MeshGPT1 to generate a mesh repre-
sentation directly, as a set of triangles. Inspired by pow-
erful recent advances in generative models for language,
we adopt a direct sequence generation approach to synthe-
size triangle meshes as sequences of triangles. Following
text generation paradigms, we first learn a vocabulary of
triangles. Triangles are encoded into latent quantized em-
beddings through an encoder. To encourage learned trian-

1nihalsid.github.io/mesh-gpt

https://nihalsid.github.io/mesh-gpt/

Figure 2. Meshes generated by our method (top) for chairs, tables,
benches, and lamps when trained on ShapeNet [5]. MeshGPT
meshes tend to be compact, with the ability to represent both sharp
details and curved boundaries. This contrasts with neural field-
based approaches that yield dense triangulations not easily simpli-
fied through decimation (bottom).

gle embeddings to maintain local geometric and topological
features, we employ a graph convolutional encoder. These
triangle embeddings are then decoded by a ResNet [22] de-
coder that processes the sequence of tokens representing
a triangle to produce its vertex coordinates. We can then
train a GPT-based architecture on this learned vocabulary to
autoregressively produce sequences of triangles represent-
ing a mesh. Experiments across multiple categories of the
ShapeNet dataset demonstrate that our method significantly
improves 3D mesh generation quality in comparison with
state of the art, with an average 9% increase in shape cover-
age and a 30-point improvement in FID scores.
In summary, our contributions are:
• A new generative formulation for meshes as a sequence

of triangles, tailoring a GPT-inspired decoder-only trans-
former, to produce compact meshes with sharp edges.

• Triangles are represented as a vocabulary of latent geo-
metric tokens to enable coherent mesh generation in an
autoregressive fashion.

2. Related Work

Voxel-based 3D Shape Generation. Early shape genera-
tion approaches generated shapes as a grid of low-resolution
voxels [3, 9, 26, 62] or, more recently, as high-resolution
grids using efficient representations such as Octrees [57]
and sparse voxels [50], with generative models such as
GANs [17]. These methods pioneered the extension of 2D
generative techniques into the 3D domain. However, the
voxel representation inherently constrains them with grid-
like artifacts and high memory requirements, limiting their

practical utility in capturing fine details and complex ge-
ometries.

Point Cloud Generation. Methods in this category repre-
sent 3D shapes by point samples on their surfaces, aiming to
learn point distributions across shape datasets. Early works
involved GANs for synthesizing point locations [30, 54, 59]
and latent shape codes [1]. Flow-based [64] and gradient
field-based models [4] also yield impressive results. Re-
cently, diffusion-based techniques have been adapted for
point cloud generation [44, 67, 68], showing competitive
performance in shape generation. However, point clouds,
while useful, are not the ideal format for downstream appli-
cations requiring 3D content, as converting them to meshes,
which apart from being non-trivial [42, 47, 51, 65], can of-
ten fail to accurately reflect the characteristics of the under-
lying mesh datasets.

Neural Implicit Fields. Implicit representation of shapes
as volumetric functions (e.g., signed distance functions) has
become popular for encoding arbitrary topologies at any
resolution [39, 45]. Various implicit generative methods
have shown impressive performance using adversarial [6,
53] and diffusion-based [8, 14, 41] models. Diffusion-based
neural field synthesis in MLP weight spaces [13] and tri-
planes [55] have also been explored, alongside leveraging
image-based models for optimizing NeRFs [25, 34, 48, 63].
However, like point clouds, these methods require mesh
conversion [12, 32, 36, 49, 53] for downstream applications,
often leading to dense meshes that don’t capture the proper-
ties of the underlying datasets (e.g., edge lengths, dihedral
angles). In contrast, we directly fit a generative model to
triangulated meshes, explicitly modeling the training data,
resulting in clean, compact and coherent meshes as outputs.

3D Mesh Generation. While several discriminative ap-
proaches capable of learning signals directly on mesh struc-
ture were proposed over the recent years [16, 21, 23,
33, 40, 52, 56], direct mesh generation remains underex-
plored. Mesh generation has been approached with various
learning-based methods [7, 11, 18, 43]. AtlasNet [18] and
BSPNet [7], for example, produce mesh patches and com-
pact meshes through binary space partitioning, respectively.
However, as we demonstrate in Sec. 4, these struggle with
accurately capturing shape detail.

Closely related to our work, PolyGen [43] employs two
autoregressively trained networks to create explicit mesh
structures. In contrast, our method utilizes a single decoder-
only network, representing triangles through learned to-
kens for a more streamlined generation process compared
to PolyGen’s separate vertex-and-face sequence approach.
Additionally, we observe that PolyGen’s vertex generator,
oblivious to face generation, and the face generator, not ex-
posed to the generated vertex distribution during training,
exhibit limited robustness during inference.

3. Method
Inspired by advancements in large language models, we de-
velop a sequence-based approach to autoregressively gen-
erate triangle meshes as sequences of triangles. We first
learn a vocabulary of geometric embeddings from a large
collection of 3D object meshes, enabling triangles to be en-
coded to and decoded from this embedding. We then train
a transformer for mesh generation as autoregressive next-
index prediction over the learned vocabulary embeddings.

To learn the triangle vocabulary, we employ a graph con-
volution encoder operating on triangles of a mesh and their
neighborhood to extract geometrically rich features that
capture the intricate details of 3D shapes. These features
are quantized as embeddings of a codebook using resid-
ual quantization [27, 38], effectively reducing sequence
lengths of the mesh representation. These embeddings are
sequenced and then decoded by a 1D ResNet [22] guided
by a reconstruction loss. This phase lays the groundwork
for the subsequent training of the transformer.

We then train a GPT-style decoder-only transformer,
which leverages these quantized geometric embeddings.
Given a sequence of geometric embeddings extracted from
the triangles of a mesh, the transformer is trained to predict
the codebook index of the next embedding in the sequence.
Once trained, the transformer can be auto-regressively sam-
pled to predict sequences of embeddings. These embed-
dings can then be decoded to generate novel and diverse
mesh structures that display efficient, irregular triangula-
tions similar to human-crafted meshes.

3.1. Learning Quantized Triangle Embeddings

Autoregressive generative models, such as transformers,
synthesize sequences of tokens where each new token is
conditioned on previously generated tokens. For generating
meshes using transformers, we must then define the order-
ing convention of generation, along with the tokens.

For sequence ordering, Polygen [43] suggests a conven-
tion where faces are ordered based on their lowest vertex
index, followed by the next lowest, and so forth. Vertices
are sorted in z-y-x order (z representing the vertical axis),
progressing from lowest to highest. Within each face, in-
dices are cyclically permuted to place the lowest index first.
In our method, we also adopt this sequencing approach.

To define the tokens to generate, we consider a practical
approach to represent a mesh M for autoregressive genera-
tion: a sequence of triangles,

M := (f1, f2, f3, . . . , fN), (1)

with N faces (triangles), fi ∈ Rnin having nin features. A
simple approach to describe each triangle is as its three ver-
tices, comprising nine total coordinates. Upon discretiza-
tion, these coordinates can be treated as tokens. The se-
quence length in this case would be 9N .

Figure 3. We employ a graph convolutional encoder to process
mesh faces, leveraging geometric neighborhood information to
capture strong features representing intricate details of 3D shapes.
These features are then quantized into codebook embeddings using
residual quantization [27, 38]. In contrast to naive vector quanti-
zation, this ensures better reconstruction quality. The quantized
embeddings are subsequently sequenced and decoded through a
1D ResNet [22], guided by a reconstruction loss.

However, we observe two major challenges when using
coordinates directly as tokens. First, the sequence lengths
become excessively long, as each face is represented by
nine values. This length does not scale well with trans-
former architectures, which often have limited context win-
dows. Second, representing discrete positions of a trian-
gle as tokens fails to capture geometric patterns effectively.
This is because such a representation lacks information
about neighboring triangles and does not incorporate any
priors from mesh distributions.

To address the aforementioned challenges, we propose
to learn geometric embeddings from a collection of triangu-
lar meshes, utilizing an encoder-decoder architecture with
residual vector quantization at its bottleneck (Fig. 3).

The network’s encoder E employs graph convolutions
on mesh faces, where each face forms a node and neigh-
boring faces are connected by undirected edges. The input
face node features are comprised of the nine positionally
encoded coordinates of its vertices, face normal, angles be-
tween its edges, and area. These features undergo process-
ing through a stack of SAGEConv [20] layers, extracting
a feature vector for each face. This graph convolutional
approach enables the extraction of geometrically enriched
features zi ∈ Rnz for each face,

Z = (z1, z2, . . . , zN) = E(M), (2)

fusing neighborhood information into the learned embed-
dings.

For quantization, we employ residual vector quantiza-
tion (RQ) [38]. We found that using a single code per face

is insufficient for accurate reconstruction. Instead, we use a
stack of D codes per face. Further, we find that instead of di-
rectly using D codes per face, it is more effective to first di-
vide the feature channels among the vertices, aggregate the
features by shared vertex indices, and then quantize these
vertex-based features, giving D

3 codes per vertex, and there-
fore effectively D codes per face. This leads to sequences
that are easier to learn for the transformer trained subse-
quently (see Tab. 3 and Fig. 10 for comparison). Formally,
given a codebook C, RQ with depth D represents features Z
as

T = (t1, t2, . . . , tN) = RQ (Z; C, D), (3)

ti = (t1i , t
2
i , . . . , t

D
i), (4)

where ti is a stack of tokens, each token tdi being an index
to an embedding e(tdi) in the codebook C.

The decoder then decodes the quantized face embed-
dings to triangles. First, the stack of D features is reduced
to a single feature per face through summation across em-
beddings and concatenation across vertices,

Ẑ = (ẑ1, . . . , ẑN), with ẑi = ⊕2
v=0

D
3∑

d=1

e(t3.v+d
i). (5)

The face embeddings are arranged in the previously de-
scribed order, and a 1D ResNet34 decoding head G pro-
cesses the resulting sequence to output the reconstructed
mesh M̂ = G(Ẑ) with 9 coordinates representing each
face. We observe that predicting these coordinates as dis-
crete variables, i.e. as a probability distribution over a set
of discrete values, leads to a more accurate reconstruction
compared to regressing them as real values (Fig. 4). A
cross-entropy loss on the discrete mesh coordinates and a
commitment loss for the embeddings guides the reconstruc-
tion process. More details can be found in supplementary.

Figure 4. Our method utilizes a ResNet [22] decoder that out-
puts mesh faces as a distribution over discretized coordinate val-
ues (center), as opposed to regression of continuous values (left).
This significantly reduces floating face artifacts, leading to recon-
structions that more closely resemble the ground truth (right).

After training, the graph encoder E and codebook C are
incorporated into the transformer training, using T from
Eq. 3 as the token sequence. With |T| = DN , this sequence
is more concise than the naive 9N -length tokenization when
D < 9. Thus, we obtain geometrically rich embeddings
with shorter sequence lengths, overcoming our initial chal-
lenges and paving the way for efficient mesh generation.

3.2. Mesh Generation with Transformers

Figure 5. We employ a transformer to generate mesh sequences
as token indices from a pre-learned codebook vocabulary. During
training, a graph encoder extracts features from mesh faces, which
are quantized into a set of face embeddings. These embeddings are
flattened, bookended with start and end tokens, and fed into a GPT-
style transformer. This decoder predicts the subsequent codebook
index for each embedding, optimized via cross-entropy loss.

We employ a decoder-only transformer architecture from
the GPT family of models to predict meshes as sequences
of indices from the learned codebook in Sec. 3.1. The input
to this transformer consists of embeddings e(tdi) extracted
from the mesh M using the GraphConv encoder E and
quantized using RQ (Eq. 3). The embeddings are prefixed
and suffixed with a learned start and end embedding. Ad-
ditionally, learned discrete positional encodings are added,
indicating the position of each face in the sequence and the
index of each embedding within the face. The features then
pass through a stack of multiheaded self-attention layers,
where the transformer is trained to predict the codebook in-
dex of the next embedding in the sequence (Fig. 5). Es-
sentially, we maximize the log probability of the training
sequences with respect to the transformer parameters θ,

N∏
i=1

D∏
d=1

p (tdi | e(td<i), e(t
<d
i); θ). (6)

Once the transformer is trained, it can autoregressively
generate a sequence of tokens, starting with a start token
and continuing until a stop token is encountered using beam
sampling. The codebook embeddings indexed by this se-
quence of tokens is then decoded by decoder G to produce
the generated mesh. As this output initially forms a ‘tri-
angle soup’ with duplicate vertices for neighboring faces,
we apply a simple post-processing operation to merge close
vertices (e.g., with MeshLab), to yield the final mesh.

3.3. Implementation Details

In learning the triangle vocabulary, our residual quantiza-
tion layer features a depth of 2, yielding D = 6 embed-
dings per face, each with dimension 192. The codebook is
dynamically updated using an exponential moving average
of the clustered features. Following [29], we incorporate
stochastic sampling of codes and employ a shared codebook
across all levels. The decoder predicts the coordinates of
the faces across 128 classes, resulting in a discretization of
space to 1283 possible values. This encoder-decoder net-
work is trained using 2 A100 GPUs for ≈ 2 days.

For our transformer, we use a GPT2-medium model,
equipped with a context window of up to 4608 embeddings.
The model is trained on 4 A100 GPUs, for ≈ 5 days.

Both the encoder-decoder network and the transformer
are written using the Pytorch [46] and are trained utilizing
the ADAM optimizer [28]. We set the learning rate at 1 ×
10−4 and use an effective batch size of 64.

4. Experiments

4.1. Dataset and Metrics

Data. We present our results on the ShapeNetV2 dataset.
Both the encoder-decoder network and the GPT model are
trained across all 55 categories of this dataset. Addition-
ally, we fine-tune the GPT model specifically on four cat-
egories: Chair, Table, Bench, and Lamp. The results are
reported on these categories. During training, we employ
augmentation techniques including random shifts and ran-
dom scaling to enhance the diversity of the training meshes.
Similar to Polygen [43], we also apply planar decimation to
further augment the shapes. To ensure that the entire mesh
fits into the transformer’s context window, we select only
those meshes for training that have fewer than 800 faces
post-decimation. Detailed information regarding the aug-
mentation processes, decimation techniques, and data splits
are provided in the supplementary material.

Metrics. Evaluating the unconditional synthesis of 3D
shapes presents challenges due to the absence of direct
ground truth correspondence. Hence, we utilize estab-
lished metrics for assessment, consistent with previous
works [37, 67, 68]. These include Minimum Matching Dis-
tance (MMD), Coverage (COV), and 1-Nearest-Neighbor
Accuracy (1-NNA). For MMD, lower is better; for COV,
higher is better; for 1-NNA, 50% is the optimal. We use
a Chamfer Distance (CD) distance measure for computing
these metrics in 3D. More details about these metrics can be
found in the supplementary.

The aforementioned metrics effectively measure the
quality of shapes but do not address the visual similarity
of the generated meshes to the real distribution. To assess
this aspect, we render both the generated meshes and the

Class Method COV↑ MMD↓ 1-NNA FID↓ KID↓ |V| |F|

Chair

AtlasNet [18] 9.03 4.05 95.13 170.71 0.169 2500 4050
BSPNet [7] 16.48 3.62 91.75 46.73 0.030 673 1165
Polygen [43] 31.22 4.41 93.56 61.10 0.043 248 603
GET3D [14] 40.85 3.56 83.04 81.45 0.054 13725 27457
GET3D* 38.75 3.57 84.07 78.29 0.065 199 399

MeshGPT 43.28 3.29 75.51 18.46 0.010 125 228

Table

AtlasNet [18] 7.16 3.85 96.30 161.38 0.150 2500 4050
BSPNet [7] 16.83 3.14 93.58 30.78 0.017 420 699
Polygen [43] 32.99 3.00 88.65 38.53 0.029 147 454
GET3D [14] 41.70 2.78 85.54 93.93 0.076 13767 27537
GET3D* 37.95 2.85 81.93 50.46 0.037 199 399

MeshGPT 45.68 2.36 72.88 6.24 0.002 99 187

Bench

AtlasNet [18] 20.53 2.47 90.58 189.39 0.163 2500 4050
BSPNet [7] 28.74 2.05 88.44 59.11 0.030 457 756
Polygen [43] 51.92 1.97 76.98 49.34 0.031 172 430

MeshGPT 55.23 1.44 68.24 8.72 0.001 159 291

Lamp

AtlasNet [18] 19.97 4.68 91.85 177.91 0.139 2500 4050
BSPNet [7] 18.38 5.32 93.13 112.65 0.077 587 1011
Polygen [43] 47.86 4.18 81.42 52.48 0.025 185 558

MeshGPT 53.88 3.94 65.73 19.91 0.004 150 288

Table 1. Quantitative comparison on the task of unconditional
mesh generation on a subset of categories from the ShapeNet [5]
dataset. GET3D* refers to meshes simplified to 400 faces using
QEM [15]. MMD values are multiplied by 103. We outperform
the baselines on shape quality, visual and compactness metrics.

ShapeNet meshes as images from eight different viewpoints
using Blender, applying a metallic material to emphasize
the geometric structures. Subsequently, we calculate the
FID (Fréchet Inception Distance) and KID (Kernel Incep-
tion Distance) scores for these image sets. For both FID
and KID, lower scores indicate better performance. We fur-
ther report compactness as the average number of vertices
and faces in the generated meshes.

4.2. Results

We benchmark our approach against leading mesh gener-
ation methods: Polygen [43], which generates polygonal
meshes by first generating vertices followed by faces con-
ditioned on the vertices; BSPNet [7], which represents a
mesh through convex decompositions; and AtlasNet [18],
which represents a 3D mesh as a deformation of multiple
2D planes. We additionally compare with a state-of-the-art
neural field-based method, GET3D [14], that creates shapes
as 3D signed distance fields (SDFs) from which a mesh is
extracted by differentiable marching tetrahedra. For BSP-
Net and AtlasNet, which are built on autoencoder back-
bones, we follow [1] to fit a Gaussian mixture model with
32 components to enable unconditional sampling of shapes.

As shown in Fig. 6, Fig. 7 and Tab. 1, our method outper-
forms all baselines in all four categories. Our method can
generate sharp and compact meshes with high geometric de-
tails. Compared to Polygen, our approach creates shapes
with more intricate details. Additionally, Polygen’s sepa-
rate training for vertex and face models, with the latter only
exposed to ground truth vertex distributions, makes it more
susceptible to error accumulation during inference. Atlas-
Net often suffers from folding artifacts, resulting in lower

Figure 6. Qualitative comparison of Chair and Table meshes from ShapeNet [5]. Our approach produces compact meshes with sharp
geometric details. In contrast, baselines often either miss these details, produce over-triangulated meshes, or output too simplistic shapes.

diversity and shape quality. BSPNet’s use of BSP tree of
planes tends to produce blocky shapes with unusual trian-
gulation patterns. GET3D generates good high-level shape
structures, but over-triangulated and with imperfect flat sur-
faces. Simplifying GET3D-generated meshes with algo-
rithms such as QEM [15] results in a loss of fine structures.

User Study. We further conducted a user study, in Tab. 2,
to assess generated mesh quality. 49 participants were
shown pairs of four meshes, randomly selected from our
method and each baseline method. Additionally, users

were presented with ground truth ShapeNet meshes for
comparison. Participants were asked their preference be-
tween our method and the baseline in terms of both overall
shape quality and similarity of triangulation patterns to the
ground truth meshes. This resulted in 784 total question re-
sponses. Our method was significantly preferred over Atlas-
Net, Polygen, and BSPNet in both shape and triangulation
quality. Moreover, a majority of users (68%) favored our
method over neural field-based GET3D in shape quality,
with even higher preference (73%) for triangulation qual-

Figure 7. Qualitative comparison of Bench and Lamp meshes from
the ShapeNet [5] dataset. Compared to baselines, our method pro-
duces valid meshes with high geometric fidelity.

Preference AtlasNet [18] BSPNet [7] Polygen [43] GET3D [14]

Our Shape 82.65% 78.57% 85.71% 68.37%
Our Triangulation 84.69% 71.43% 84.69% 73.47%

Table 2. Percentage of users who prefer our method over the base-
lines in terms of shape quality and the triangulation quality. Our
generated meshes are preferred significantly more often.

Method COV↑ MMD↓ 1-NNA FID↓ KID↓

w/o Learned Tokens 27.50 4.51 93.15 40.20 0.024
w/o Encoder Features 39.24 3.43 84.48 30.35 0.017
w/o Pretraining 36.97 3.73 84.69 27.54 0.014
w/o Sequence Compression 30.98 4.15 88.98 38.76 0.023
w/o per Vertex Quantization 23.57 5.49 98.35 74.94 0.050

MeshGPT 43.28 3.29 75.51 18.46 0.010

Table 3. Ablations of our design choices on the Chair category of
the ShapeNet [5] dataset. As highlighted by the drop in perfor-
mance by removing any of them, each of these contribute to the
final method.

ity. This underscores our ability to generate high-quality
meshes that align with human users’ preferences. Further
user study details are provided in the supplemental.

Shape Novelty Analysis. We investigate whether our
method can generate novel shapes that extend beyond the
training dataset, ensuring the model is not merely retriev-
ing existing shapes. Following the methodology in pre-
vious studies [13, 24], we generate 500 shapes using our
model. For each generated shape, we identify the top three

Figure 8. Shape novelty analysis on ShapeNet [5] chair category.
We show the 3 nearest neighbors in terms of Chamfer Distance
(CD) for a generated shape (top). We also plot the distribution of
500 generated chair samples from our method and their closeness
to training distribution. Our method can generate shapes that are
similar (low CD) as well as different (high CD) from the training
distribution, with shapes at the 50th percentile looking different
from closest train shape.

Figure 9. Given a partial mesh, our method can infer multiple
possible shape completions.

nearest neighbors from the training set based on Chamfer
Distance (CD). To ensure a fair distance computation, ac-
counting for potential discrepancies due to scale or shift in
the augmented generations, we normalize all generated and
train shapes to be centered within [0, 1]3.

Fig. 8 displays the most similar shapes from the train
set corresponding to a sample generated by our model. We
conduct a detailed analysis of the shape similarity distri-
bution between the retrieved and generated shapes on the

Chair category in Fig. 8. The CD distribution reveals that
our method not only covers shapes in the training set, in-
dicated by low CD values, but also successfully generates
novel and realistic-looking shapes, indicated by high CD
values. In the supplemental, we present further analysis of
the novelty of all meshes generated by our method, which
are featured in the figures of this paper.

Shape Completion. Our model can infer multiple possible
completions for a given partial shape, leveraging its proba-
bilistic nature to generate diverse shape hypotheses. Fig. 9
illustrates examples of chair and table completions.

4.2.1 Ablations

In Tab. 3, we show a set of ablations on the task of uncondi-
tional mesh generation on ShapeNet Chair category. Further
ablations are detailed in the supplementary.

Figure 10. Ablation over our method’s components. Naive tok-
enization (w/o Learned Tokens) and naive per face quantization
(w/o per-vertex quantization) markedly diminishes shape quality.
Longer sequences without sequence compression (w/o Sequence
Compression) lead to the model forgetting the context and repeat-
ing shape elements in the output.

Do learned geometric embeddings help? Using our geo-
metric embeddings in vocabulary learning significantly im-
proves over naive coordinate tokenization (w/o Learned To-
kens), as shown in Tab. 3 and Fig. 3.

Does sequence length compression help? As evidenced
by Tab. 3 and Fig. 3, a model with a shorter sequence length

performs better than without (w/o Sequence Compression),
as shorter sequence lengths fit transformer context windows
better. Visually, with longer sequences, shapes exhibit re-
peating structures due to limited context.
What is the effect of aggregation and quantization
across vertex indices instead of faces? As discussed in
Section 3, an alternative to having embeddings aggregated
and quantized across vertex indices, is to simply have the
same number of embeddings directly per face (w/o per Ver-
tex Quantization). In Tab. 3, we observe that this makes
sequences much harder to learn with the transformer.
Do features from graph convolutional encoder help in
mesh generation? An alternative to using embeddings
from the graph encoder and the codebook is to only use
the codebook indices of these tokens as input to the trans-
former, and let the transformer learn the discrete token em-
beddings (w/o Encoder Features). While the transformer is
able to still learn meaningful embeddings, these are still not
as effective as using graph encoder features.
What is the effect of large-scale shape pretraining?
Tab. 3 shows that training only on shapes from individual
categories (w/o Pretraining) leads to overfitting and sub-
obtimal performance, in contrast to pre-training our GPT
transformer on all ShapeNet train shapes.
Limitations. MeshGPT significantly advances direct mesh
generation but faces several limitations. Its autoregressive
nature leads to slower sampling performance, with mesh
generation times taking 30 to 90 seconds. Despite our
learned tokenization approach reducing sequence lengths,
which suffices for single object generation, it may not be
as effective for scene-scale generation, suggesting an area
for future enhancement. Moreover, our current computa-
tional resources limit us to using a GPT2-medium trans-
former, which is smaller than more sophisticated models
like Llama2 [58]. Given that larger language models bene-
fit from increased data and computational power, expanding
these resources could significantly boost MeshGPT’s per-
formance and capabilities.

5. Conclusion
We have introduced MeshGPT, a novel shape generation ap-
proach that outputs meshes directly as triangles. We learn
a vocabulary of geometric embeddings over a distribution
of meshes, over which a transformer is trained to predict
meshes autoregressively as a sequence of triangles. In con-
trast to existing mesh generation approaches, our method
generates clean, coherent meshes which are compact and
follow the triangulation patterns in real data more closely.
We believe that MeshGPT will not only elevate the current
landscape of mesh generation but also inspire new research
in the area, offering a unique alternative to the more com-
monly explored representations for 3D content creation.

Acknowledgements
This work was funded by AUDI AG. Matthias Nießner was
supported by the ERC Starting Grant Scan2CAD (804724).
Angela Dai was supported by the Bavarian State Ministry of
Science and the Arts coordinated by the Bavarian Research
Institute for Digital Transformation (BIDT). We would
like to thank Ziya Erkoç, Quyet-Chien Nguyen, Haox-
uan Li and Artem Sevastopolsky for the helpful discussions.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 2, 5

[2] Henry Blumberg. Hausdorff’s grundzüge der mengenlehre.
1920. 12

[3] Andrew Brock, Theodore Lim, James M Ritchie, and
Nick Weston. Generative and discriminative voxel mod-
eling with convolutional neural networks. arXiv preprint
arXiv:1608.04236, 2016. 1, 2

[4] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun
Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.
Learning gradient fields for shape generation. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16, pages
364–381. Springer, 2020. 2

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 2, 5, 6, 7, 12, 14, 15,
16

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5939–5948, 2019. 2

[7] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 45–54, 2020. 2, 5, 7,
14

[8] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexan-
der G Schwing, and Liang-Yan Gui. Sdfusion: Multimodal
3d shape completion, reconstruction, and generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4456–4465, 2023. 2

[9] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part VIII 14, pages 628–644. Springer, 2016. 2

[10] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 12

[11] Angela Dai and Matthias Nießner. Scan2mesh: From un-
structured range scans to 3d meshes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5574–5583, 2019. 2

[12] Akio Doi and Akio Koide. An efficient method of triangu-
lating equi-valued surfaces by using tetrahedral cells. IEICE
TRANSACTIONS on Information and Systems, 74(1):214–
224, 1991. 2

[13] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner,
and Angela Dai. Hyperdiffusion: Generating implicit
neural fields with weight-space diffusion. arXiv preprint
arXiv:2303.17015, 2023. 2, 7, 15

[14] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. Advances In Neural In-
formation Processing Systems, 35:31841–31854, 2022. 1, 2,
5, 7, 14

[15] Michael Garland and Paul S Heckbert. Surface simplification
using quadric error metrics. In Proceedings of the 24th an-
nual conference on Computer graphics and interactive tech-
niques, pages 209–216, 1997. 5, 6

[16] Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos
Zafeiriou. Spiralnet++: A fast and highly efficient mesh con-
volution operator. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision workshops, pages 0–0,
2019. 2

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[18] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 2, 5, 7, 14

[19] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Bar-
las Oğuz. 3dgen: Triplane latent diffusion for textured mesh
generation. arXiv preprint arXiv:2303.05371, 2023. 1

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30, 2017. 3, 12, 15

[21] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (ToG), 38(4):1–12,
2019. 2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2, 3, 4, 12, 15

[23] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong
Cai, Jiahui Huang, Tai-Jiang Mu, and Ralph R Martin.
Subdivision-based mesh convolution networks. ACM Trans-
actions on Graphics (TOG), 41(3):1–16, 2022. 2

[24] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural
wavelet-domain diffusion for 3d shape generation. In SIG-
GRAPH Asia 2022 Conference Papers, pages 1–9, 2022. 7

[25] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867–876, 2022. 2

[26] Danilo Jimenez Rezende, SM Eslami, Shakir Mohamed, Pe-
ter Battaglia, Max Jaderberg, and Nicolas Heess. Unsuper-
vised learning of 3d structure from images. Advances in neu-
ral information processing systems, 29, 2016. 2

[27] Biing-Hwang Juang and A Gray. Multiple stage vector quan-
tization for speech coding. In ICASSP’82. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, pages 597–600. IEEE, 1982. 3

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[29] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022. 5, 12

[30] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-
zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv
preprint arXiv:1810.05795, 2018. 2

[31] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-
sdf: Text-to-shape via voxelized diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12642–12651, 2023. 1

[32] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2916–2925, 2018. 2

[33] Isaak Lim, Alexander Dielen, Marcel Campen, and Leif
Kobbelt. A simple approach to intrinsic correspondence
learning on unstructured 3d meshes. In Proceedings of the
European Conference on Computer Vision (ECCV) Work-
shops, pages 0–0, 2018. 2

[34] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 300–309, 2023. 2

[35] Zhen Liu, Yao Feng, Michael J Black, Derek
Nowrouzezahrai, Liam Paull, and Weiyang Liu. Meshdif-
fusion: Score-based generative 3d mesh modeling. arXiv
preprint arXiv:2303.08133, 2023. 1

[36] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In Sem-
inal graphics: pioneering efforts that shaped the field, pages
347–353. 1998. 1, 2

[37] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 1, 5

[38] Julieta Martinez, Holger H Hoos, and James J Little. Stacked
quantizers for compositional vector compression. arXiv
preprint arXiv:1411.2173, 2014. 3, 12

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4460–4470, 2019. 2

[40] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Da-
vide Scaramuzza, and Luca Carlone. Primal-dual mesh con-
volutional neural networks. Advances in Neural Information
Processing Systems, 33:952–963, 2020. 2

[41] Norman Müller, Yawar Siddiqui, Lorenzo Porzi,
Samuel Rota Bulo, Peter Kontschieder, and Matthias
Nießner. Diffrf: Rendering-guided 3d radiance field
diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4328–4338, 2023. 1, 2

[42] Liangliang Nan and Peter Wonka. Polyfit: Polygonal surface
reconstruction from point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2353–
2361, 2017. 2

[43] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 2, 3, 5, 7, 14

[44] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 2

[45] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019. 2

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 5

[47] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems, 34:13032–13044, 2021. 2

[48] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 2

[49] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit
Guillard, Timur Bagautdinov, Pierre Baque, and Pascal Fua.
Meshsdf: Differentiable iso-surface extraction. Advances in
Neural Information Processing Systems, 33:22468–22478,
2020. 2

[50] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthe-

sis with sparse voxel grids. Advances in Neural Information
Processing Systems, 35:33999–34011, 2022. 2

[51] Nicholas Sharp and Maks Ovsjanikov. Pointtrinet: Learned
triangulation of 3d point sets. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXIII 16, pages 762–778.
Springer, 2020. 2

[52] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks
Ovsjanikov. Diffusionnet: Discretization agnostic learning
on surfaces. ACM Transactions on Graphics (TOG), 41(3):
1–16, 2022. 2

[53] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. Advances
in Neural Information Processing Systems, 34:6087–6101,
2021. 2

[54] Dong Wook Shu, Sung Woo Park, and Junseok Kwon.
3d point cloud generative adversarial network based on
tree structured graph convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 3859–3868, 2019. 2

[55] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20875–20886, 2023. 2

[56] Dmitriy Smirnov and Justin Solomon. Hodgenet: Learning
spectral geometry on triangle meshes. ACM Transactions on
Graphics (TOG), 40(4):1–11, 2021. 2

[57] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional archi-
tectures for high-resolution 3d outputs. In Proceedings of
the IEEE international conference on computer vision, pages
2088–2096, 2017. 2

[58] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 8

[59] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-
ing localized generative models for 3d point clouds via graph
convolution. In International conference on learning repre-
sentations, 2018. 2

[60] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.
16

[61] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 16

[62] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. Ad-
vances in neural information processing systems, 29, 2016.
1, 2

[63] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying
Shan, Xiaohu Qie, and Shenghua Gao. Dream3d: Zero-shot

text-to-3d synthesis using 3d shape prior and text-to-image
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
20908–20918, 2023. 2

[64] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 4541–4550, 2019. 2

[65] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 206–215, 2018. 2

[66] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19313–19322, 2022. 15

[67] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems, 2022. 1, 2, 5, 15

[68] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5826–5835, 2021. 1, 2, 5

Appendix

In this supplementary document, we discuss additional de-
tails about our method MeshGPT. We provide implementa-
tion details of our method, loss functions, and the baselines
in Section B. Additional details about the user study are pro-
vided in Section C. We also provide further qualitative and
quantitative results (Section E), including a shape novelty
analysis (Section D) for shapes from the main paper. We
further encourage the readers to check out the supplemen-
tal video for a summary of the method and an overview of
results.

A. Data

Selection. We use the ShapeNetV2 [5] dataset for all our
experiments. We first apply planar decimation to each shape
using Blender [10], with the angle tolerance parameter α
set within [1, 60]. The impact of this decimation is as-
sessed by calculating the Hausdorff distance [2] between the
decimated and original shapes. We then choose, for each
original shape, the decimated version with the Hausdorff
distance closest to, but below, a pre-set threshold δhausdorff.
Shapes with more than 800 faces are excluded, resulting in a
final count of 28980 shapes across all categories. The Chair,
Table, Bench, and Lamp categories are further divided into
a 9:1 train-test split. All shapes from rest of the categories
are used for pretraining phase, while only the training subset
from specific categories is used for pretraining and finetun-
ing. All shapes are normalized to be centered at the origin
and scaled to ensure the longest side is of unit length.

Augmentation. During the training of both the encoder-
decoder and the transformer, multiple augmentation tech-
niques are applied to all train shapes. Scaling augmenta-
tion, ranging from 0.75 to 1.25, is independently applied
across each axis. Post-scaling, meshes are resized to keep
the longest side at unit length. Additionally, jitter-shift aug-
mentation in the range of [−0.1, 0.1] is used, adjusted to
maintain the mesh within the unit bounding box around the
origin. We also implement varying levels of planar deci-
mation for training shapes, provided the distortion remains
below δhausdorff.

B. Method Details

B.1. Architecture

The architecture of our encoder-decoder network is elabo-
rated in Fig. 14. The encoder comprises a series of SAGE-
Conv [20] graph convolution layers, processing the mesh
in the form of a face graph. For each graph node, input
features include the positionally encoded 9 coordinates of
the face triangle, its area, the angles between its edges, and
the normal of the face. The decoder is essentially a 1D

ResNet-34 [22] network, applied to the face features inter-
preted as a 1D sequence. It outputs logits corresponding to
the 9 discrete coordinates of each face triangle, which are
discretized within a 1283 space. The codebook C has a size
of 16384. The architecture of the transformer is simply a
GPT-2 medium architecture, i.e. 24 multi-headed self at-
tention layers, 16 heads, 768 as feature width, with context
length of 4608.

B.2. Residual Vector Quantization

Fundamentals. For quantization, we employ residual vec-
tor quantization (RQ) [29, 38]. RQ discretizes a vector z
with a stack of D ordered codes. Starting with the 0th resid-
ual r0 = z, RQ recursively computes td as the code of the
residual rd−1, and the next residual rd as

td = Q (rd−1; C) (7)

rd = rd−1 − e(td) (8)

where Q(z; C) denotes vector quantization of z with code-
book C, and e(td) is the embedding in the codebook C. Fur-
ther, we define

ẑ(d) =

d∑
1

e(td) (9)

as the partial sum of up to d code embeddings, and ẑ = ẑD

is the quantized vector of z. The recursive quantization of
RQ thus approximates the vector z in a coarse-to-fine man-
ner [29]. The commitment loss can now be defined between
vector z and its quantization ẑ as

Lcommit(z, ẑ) =

D∑
d=1

∥z− sg[ẑ(d)]∥22 (10)

where sg denotes the stop gradient operation.
Per Vertex Residual Vector Quantization. Instead of di-
rectly applying RQ, for a face feature zi extracted by the
graph encoder, we first split this 576 dimension face feature
zi into 3 features, (z1i , z

2
i , z

3
i), each of 192 dimensions rep-

resenting the features of the face triangle’s 3 vertices. The
features the fall on vertices that are shared across faces are
averaged. On these per vertex index feature zji , RQ quan-
tizes them into a stack of D

3 features,

RQ(zi; C, D) = (RQ(z1i ; C,
D

3
), . . . ,RQ(z3i ; C,

D

3
)) (11)

for codebook C, with

RQ(zji; C,
D

3
) = (t

2j−D
3 +1

i , t
2j−D

3 +2
i , . . . , t2ji), (12)

where tdi is the index to the embedding e(tdi) in the code-
book C. Taken together for each vertex, these form a stack
of D features,

RQ(zi; C, D) = (t1i , t
2
i , . . . , t

D
i) = ti. (13)

Figure 11. Additional novel shapes on Chairs, Tables, Benches and Lamps generated by our method.

Thus, the residual quantization for the features extracted for
all the N faces of the mesh Z = (z1, z2, . . . , zN) is given
as

RQ(Z; C, D) = RQ(z1 . . . zN; C, D) (14)
RQ(z1 . . . zN; C, D) = (t0, t1, . . . , tN). (15)

Fig. 16 gives an intuition on why ‘per vertex’ tokenization
is better than ‘per face’ tokenization, with ablations in the
main paper confirming it.

B.3. Loss Functions

Vocabulary Learning. Let Pnijk be the predicted prob-
ability distribution over the discrete coordinates, where n
is the face index, i is the vertex index inside the face, j is
the coordinate’s axis index (x, y or z), and k goes over the
discretized positions ∈ {1, 2, 3, . . . , 128}. If Vnij is the tar-
get discretized position, then the reconstruction loss for the

encoder-decoder network is given as

Lrecon =

N∑
n=1

3∑
i=1

3∑
j=1

128∑
k=1

wnijk logPnijk (16)

with

wnijk = smooth (one-hot128 (Vnij)) (17)

is a smoothening kernel applied across the one-hot proba-
bility distribution over the targets, encouraging physically
close coordinates to be penalized less. The loss over the
encoder-decoder network is the sum of Lrecon and Lcommit
previously described.

Transformer. Given a target sequence T =
(t0, t1, . . . , tN) with ti = (t1i , t

2
i , . . . , t

D
i), and sji is

the corresponding predicted sequence element, then the

Figure 12. Shape novelty analysis on ShapeNet [5] chair and table category for shapes generated by our method shown in main paper. We
show the 3 nearest neighbors in terms of Chamfer Distance (CD) for a generated shape. Shapes are scaled to a unit length along all axes to
account for augmented generations before computing CD.

transformer is trained with the loss

Lrecon =

N∑
i=1

D∑
j=1

|C|∑
k=1

log p(ski = tji). (18)

B.4. Baselines

We utilize the official implementations for BSPNet [7], At-
lasNet [18], and GET3D [14]. For Polygen [43], we re-
implement it following the details in their paper. To align its
architecture with our method, we employ the same GPT2-
medium architecture for the vertex model in Polygen. Ad-
ditionally, mirroring our approach, Polygen undergoes pre-
training on all categories and is finetuned for each evalu-
ated category, applying the same train-time augmentations
as used in our method.

C. User Study Details

We develop a Django-based web application for the user
study. In Fig. 15, we show the interface for the question-
naire. We randomly select 16 pairs of meshes from each
baseline and our method across the Chair and Table cate-
gories, half of which are used for a question on preference
based on shape quality, and the other half for preference
based on triangulation quality. After the samples are pre-
pared, we ask the users to pick the sample which they pre-
fer more based on the question. To avoid biases in this user
study, we shuffle the pairs so that there is no positional hint
to our method. We also show a collection of ground-truth
meshes to the user for them to get an idea of the real distri-
bution. In the end, we gather 784 responses from 49 partic-
ipants to calculate the preferences.

Figure 13. Shape novelty analysis on ShapeNet [5] bench and lamp category for shapes generated by our method shown in main paper. We
show the 3 nearest neighbors in terms of Chamfer Distance (CD) for a generated shape. Shapes are scaled to a unit length along all axes to
account for augmented generations before computing CD.

Figure 14. Our encoder-decoder network features an encoder with
SAGEConv [20] layers processing mesh faces as a graph. Each
node inputs positionally encoded face triangle coordinates, area,
edge angles, and normal. The decoder, a 1D ResNet-34 [22], in-
terprets face features as a sequence, outputting logits for the dis-
cretized face triangle coordinates in a 1283 space.

D. Shape Novelty Analysis

Fig. 12 and 13 displays the top-3 most similar shapes from
the train set corresponding to all samples used in the main
paper that were generated by our model. These nearest
neighbor shapes are identified based on Chamfer Distance
(CD). To ensure a fair distance computation, accounting
for potential discrepancies due to scale or shift in the aug-

mented generations, we normalize all generated and train
shapes to be centered within [0, 1]3 and scaled to the ex-
tremes of this cube.

E. Additional Results

Metrics. Following recent works for unconditional shape
generation [13, 66, 67] for calculating the shape metrics we
define

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y)|X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1X +
∑

Y ∈Sr
1Y

|Sg|+ |Sr|
,

1X = 1[NX ∈ Sg],

1Y = 1[NY ∈ Sr],

where in the 1-NNA metric NX is a point cloud that is clos-
est to X in both generated and reference dataset, i.e.,

NX = argmin
K∈Sr∪Sg

D(X,K)

Figure 15. User study interface. We show users a set of random
ground-truth shapes for a category and then ask users for shape
quality and triangulation preference among meshed generated by
two methods.

Variant Triangle Accuracy (%) ↑ Cross-Entropy ↓

w/o Positional Encoding 79.33 0.2484
w/o Output Discretization 22.03 0.5705
w/o Residual Quantization 1.29 4.6679
w/o per Vertex Quantization 98.64 0.1413
w/ PointNet Encoder 88.73 0.1896
w/ GAT [60] Encoder 86.14 0.2015
w/ EdgeConv [61] Encoder 91.23 0.1702
w/ ResNet19 Decoder 96.29 0.1492
w/ PointNet Decoder 95.47 0.1528

MeshGPT 98.49 0.1473

Table 4. Ablations of our design choices for the encoder-decoder
network on the Chair category of the ShapeNet [5] dataset.

We use a Chamfer Distance (CD) distance measure
D(X,Y) for computing these metrics in 3D. To evaluate
these point-based measures, we sample 2048 points ran-
domly from all baseline outputs; and use 6000, 1200, 1000,
8000 generated shapes from chair, bench, lamp and table
categories.

Qualitative Results. Fig. 11 shows more unconditional
generations from our model across different ShapeNet cat-
egories.

Encoder-Decoder Ablations. In Tab. 4, we show a set of
ablations on the design choice for our encoder-decoder net-
work used for learning the triangle embeddings. We mea-
sure the performance in terms of triangle accuracy, which
measures average accuracy with which all 9 coordinates of

faces are correctly predicted, and the cross-entropy loss on
the test set.

Figure 16. The effectiveness of per-vertex quantization over per-
face quantization can be understood through an example where
two faces share an edge as shown above. With per-face tokeniza-
tion assigning 6 tokens per face, the sequence yields 12 unique
tokens. In contrast, per-vertex tokenization leads to repeated to-
kens in the sequence due to shared vertices between faces. This
repetition makes the sequence easier for the transformer to learn
compared to a wholly unique sequence per face, especially when
both sequences are of equal length.

We evaluate the effect of various choices – how much
does the positional encoding at input help, effect of using
continuous predictions instead of discrete as outputs, us-
ing vector quantization (1 token per face) instead of resid-
ual quantization (D tokens per face), encoder architecture
as a point encoder, or different graph convolution opera-
tors, and decoder architecture as either ResNet19 or Point-
Net decoder. Note that even though for encoder-decoder re-
construction, ‘w/o per Vertex Quantization’ performs best,
this variant works significantly worse than with per Vertex
Quantization, as shown in the main paper. Fig. 16 describes
an intuition of why the embeddings from this variant are
more transformer friendly.

	. Introduction
	. Related Work
	. Method
	. Learning Quantized Triangle Embeddings
	. Mesh Generation with Transformers
	. Implementation Details

	. Experiments
	. Dataset and Metrics
	. Results
	Ablations

	. Conclusion
	. Data
	. Method Details
	. Architecture
	. Residual Vector Quantization
	. Loss Functions
	. Baselines

	. User Study Details
	. Shape Novelty Analysis
	. Additional Results

