
Texturify: Generating Textures on
3D Shape Surfaces

Yawar Siddiqui1, Justus Thies2, Fangchang Ma3, Qi Shan3,
Matthias Nießner1, and Angela Dai1

1 Technical University of Munich
2 Max Planck Institute for Intelligent Systems

3 Apple

Fig. 1. Texturify learns to generate geometry-aware textures for untextured collections
of 3D objects. Our method produces textures that when rendered to various 2D image
views, match the distribution of real image observations. Texturify enables training
from only a collection of images and a collection of untextured shapes, which are both
often available, without requiring any explicit 3D color supervision or shape-image
correspondence. Textures are created directly on the surface of a given 3D shape,
enabling generation of high-quality, compelling textured 3D shapes.

Abstract. Texture cues on 3D objects are key to compelling visual rep-
resentations, with the possibility to create high visual fidelity with in-
herent spatial consistency across different views. Since the availability
of textured 3D shapes remains very limited, learning a 3D-supervised
data-driven method that predicts a texture based on the 3D input is
very challenging. We thus propose Texturify, a GAN-based method that
leverages a 3D shape dataset of an object class and learns to reproduce
the distribution of appearances observed in real images by generating
high-quality textures. In particular, our method does not require any 3D
color supervision or correspondence between shape geometry and im-
ages to learn the texturing of 3D objects. Texturify operates directly
on the surface of the 3D objects by introducing face convolutional op-
erators on a hierarchical 4-RoSy parameterization to generate plausible
object-specific textures. Employing differentiable rendering and adver-
sarial losses that critique individual views and consistency across views,
we effectively learn the high-quality surface texturing distribution from
real-world images. Experiments on car and chair shape collections show
that our approach outperforms state of the art by an average of 22% in
FID score.

2 Y. Siddiqui et al.

1 Introduction

3D content is central to many application areas, including content creation for vi-
sual consumption in films, games, and mixed reality scenarios. Recent years have
seen remarkable progress in modeling 3D geometry [7,10,31,40,43,46,1], achieving
significant improvements on geometric fidelity, driven by new generative learn-
ing approaches on large-scale 3D shape datasets [6,12,47]. While strong promise
has been shown in modeling geometry, generating fully textured 3D objects re-
mains a challenge that is less explored. As such, textured 3D content generation
still demands tedious manual efforts. A notable challenge in learning to auto-
matically generate textured 3D content is the lack of high-quality textured 3D
data. Large-scale shape datasets such as ShapeNet [6] have helped to drive the
success of 3D geometric shape modeling, but tend to contain simplistic and of-
ten uniform textures associated with the objects. Furthermore, existing texture
generation approaches primarily follow popular generative geometric represen-
tations that define surfaces implicitly over a volume in space [11,37,48], which
results in inefficient learning and tends to produce blurry results, since textures
are only well-defined on geometric surfaces.

We propose Texturify to address these challenges in the task of automatic
texture generation for 3D shape collections. That is, for a given shape geometry,
Texturify learns to automatically generate a variety of different textures on the
shape when sampling from a latent texture space. Instead of relying on super-
vision from 3D textured objects, we utilize only a set of images along with a
collection of 3D shape geometry from the same class category, without requiring
any correspondence between image and geometry nor any semantic part infor-
mation of the shapes. We employ differentiable rendering with an adversarial loss
to ensure that generated textures on the 3D shapes produce realistic imagery
from a variety of views during training. Rather than generating textures for 3D
shapes defined over a volume in space as has been done with implicit represen-
tations [3,5,39,45] or volumetric representations [11,48], we instead propose to
tie texture generation directly to the surface of the 3D shape. We formulate a
generative adversarial network, conditioned on the 3D shape geometry and a la-
tent texture code, to operate on the faces of a 4-way rotationally symmetric quad
mesh by defining face convolutional operators for texture generation. In contrast
to the common 2D texture parameterization with UV maps, our method enables
generating possible shape textures with awareness of 3D structural neighborhood
relations and minimal distortion. We show the effectiveness of Texturify in tex-
turing ShapeNet chairs and cars, trained with real-world imagery; our approach
outperforms the state of the art by an average of 22% FID scores.
In summary, our contributions are:

– A generative formulation for texture generation on a 3D shape that learns
to create realistic, high-fidelity textures from 2D images and a collection of
3D shape geometry, without requiring any 3D texture supervision.

– A surface-based texture generation network that reasons on 3D surface neigh-
borhoods to synthesize textures directly on a mesh surface following the
input shape geometry and a latent texture code.

Texurify 3

2 Related Works

Texturify aims at generating high-quality textures for 3D objects. Our genera-
tive method is trained on distinct sets of 3D shape and real 2D image data. Re-
lated approaches either require aligned 2D/3D datasets to optimize for textures,
meshes with surface color, or learn a joint distribution of shape and appearance
directly from 2D images. In contrast, our method predicts textures for existing
3D shapes using a parameterization that operates directly on the surface and
convolutions on the 3D meshes.

Texturing via Optimization. Texture optimization methods address instance-
specific texture generation by iteratively optimizing over certain objective func-
tions requiring aligned 2D/3D data. Traditional methods [56] employ global
optimization for mapping color images onto geometric reconstructions. To im-
prove robustness against pose misalignments, Adversarial Texture Optimiza-
tion [21] reconstructs high-quality textures from RGBD scans with a patch-
based, misalignment-tolerant conditional discriminator, resulting in sharper tex-
tures. Note that these methods are not able to complete missing texture regions
and heavily rely on the provided input images. Recently, Text2Mesh [32] proposes
to optimize for both color and geometric details of an input mesh to conform to
a target text using a CLIP-based [44] multi-view loss.

Texture Completion. IF-Net-Texture [9] focuses on texture completion from
partial textured scans and completed 3D geometry using IF-Nets [8], with a con-
volutional encoder and an implicit decoder. This method learns locally-implicit
representations and requires 3D supervision for training. SPSG [11] proposes a
self-supervised approach for training a fully convolutional network to first predict
the geometry and then the color, both of which are represented as 3D volumetric
grids. In comparison to these completion methods, our proposed method only
requires an uncoupled collection of 3D shapes and 2D images as supervision.

Retrieval-based Texturing. PhotoShape [41] proposes retrieval-based textur-
ing using a dictionary of high-quality material assets. Specifically, it classifies the
part material of an object in a 2D image and applies the corresponding material
to the respective parts of a 3D object. While this approach is able to generate
high-quality renderings, it requires detailed segmentations in the 2D image as
well as for the 3D object, and is unable to produce material that is not present
in the synthetic material dataset.

Generative Texturing. TextureFields [37] learns a continuous representation
for representing texture information in 3D, parameterized by a fully connected
residual network. While this approach can be trained in an uncoupled setting,
it tends to produce blurry or uniform textures (see Sec. 4). The work closest
to ours in terms of problem formulation is Learning Texture Generators From
Internet Photos (LTG) [54], where the texture generation task is formulated
as a shape-conditioned StyleGAN [25] generator. This approach requires several
different training sets, each containing images and silhouettes from similar view-
points, and multiple discriminators are employed to enforce correct rendering
onto these corresponding viewing angles. In comparison, our method makes no

4 Y. Siddiqui et al.

explicit assumptions on the partitioning of viewpoints. LTG also makes use of
UV parameterization, where the texture atlases come from fixed views around
the object, which inevitably results in seams and could struggle for non-convex
shapes, whereas our method operates directly on mesh faces and is thus free
from these two issues. Additionally, LTG utilizes only the silhouettes but not
surface features for training, but our approach is geometry-aware.
Generative Models for Geometry and Appearance. 3D-aware image syn-
thesis and automatic generation of 3D models have gained attention recently.
Early approaches use discretized spatial representations such as a 3D voxel
grid [13,19,33,34,51,52,57], with the downside of high memory footprint that
grows cubically with resolution. Scaling up to high-resolution image generation
with 3D voxel grids can be challenging, even with sparse volumetric representa-
tions [18]. To further alleviate memory consumption, upsampling of synthesized
images with 2D convolutional networks has been proposed [35]. An alternative
approach is neural implicit representations [5,39,45,14] which encode both the
geometry and texture into a single multi-layer perceptron (MLP) network. Sem-
inal work along this line of research includes HoloGAN [33], GIRAFFE [36],
GRAF [45], and PiGAN [3]. Several concurrent works focus on the generation
of high-resolution images with implicit representations, for example, EG3D [4],
StyleNeRF [15], CIPS-3D [55], and StyleSDF [38]. These approaches generate
high-quality 2D views rather than the textures for given input meshes, which
is the focus of this paper. Additionally, these works generate both the pseudo-
geometry and colors in a coupled fashion, resulting in tangled geometry and
texture that are difficult to be separated for downstream applications. More
recent work [42] generates textured triangle meshes from either random noise la-
tent or 3D semantic layouts, which is also different from our problem formulation
which conditions on untextured geometry.
Convolutions on 3D Meshes. Several approaches have been proposed for ap-
plying convolutions on meshes [50,30,49,17,22]. For instance, MeshCNN [17] pro-
poses a trimesh-based edge convolution operator, demonstrating part segmenta-
tion on relatively small or decimated 3D shape meshes, while our approach aims
to generate high-fidelity textures on the faces of high-resolution shape meshes.
TangentConv [49] proposes tangent convolution, which projects local surface
geometry on a tangent plane around every point and applies 2D planar convo-
lutions within these tangent images. TextureConv [22] defines a smooth, consis-
tently oriented domain for surface convolutions based on four-way rotationally
symmetric (4-RoSy) fields and demonstrate superior performance compared to
TangentConvs for semantic segmentation. Our approach builds on this Texture-
Conv 4-RoSy parameterization to generate textures on mesh faces.

3 Method

Given a collection of untextured meshes of a class of objects, our method aims
to learn a texture generator using only 2D image collections as supervision. We
do not assume any correspondence between the shapes and the image collection,
except that they should represent the same class category of objects.

Texurify 5

Fig. 2. Texturify Overview. Surface features from an input 3D mesh are encoded
through a face convolution-based encoder and decoded through a StyleGAN2-inspired
decoder to generate textures directly on the surface of the mesh. To ensure that gener-
ated textures are realistic, the textured mesh is differentiably rendered from different
view points and is critiqued by two discriminators. An image discriminator DI operates
on full image views from the real or rendered views, while a patch-consistency discrim-
inator DP encourages consistency between views by operating on patches coming from
a single real view or patches from different views of rendered images.

We propose a generative adversarial framework to tackle this problem (see
Fig. 2). Given a 3D mesh of an object, and latent texture code, our genera-
tor produces textures directly on the mesh surface. To this end, we parameterize
the mesh with a hierarchy of 4-way rotationally symmetric (4-RoSy) fields from
QuadriFlow [23] of different resolutions. This parameterization enables minimal
distortion without seams and preserving geodesic neighborhoods. Thus we define
convolution, pooling and unpooling operations that enable processing features
on the mesh surface and aggregate features across resolution hierarchy levels.
Using these operators, we design the generator as a U-Net encoder-decoder net-
work, with the encoder as a ResNet-style feature extractor and the decoder
inspired by StyleGAN2 [26], both modified to work on object surfaces. We use
differentiable rendering to render the 3D meshes with the generated textures and
enforce losses to match the appearance distribution of real image observations.
Specifically, we apply two discriminators against the real image distribution for
supervision: the first discriminator is inspired by StyleGAN2 on individual ren-
dered images to match the real distribution, while the other encourages global
texture consistency on an object through patch discrimination across multiple
views. The pipeline is trained end-to-end using a non-saturating GAN loss with
gradient penalty and path length regularization.

3.1 Parameterization

Since textures are naturally a surface attribute, parameterizing them in 3D space
is inefficient and can result in blurry textures. Therefore, we aim to generate
textures directly on the surface using a surface parameterization. One popular
way of representing textures on the surface of a mesh is through UV mapping.
However, generating a consistent UV parameterization for a set of shapes of

6 Y. Siddiqui et al.

Fig. 3. Texturify generates textures on 4-RoSy parameterized quad meshes, where
we define face convolutions with pooling and unpooling operations to operate on a
hierarchy of the quad meshes. This enables reasoning about local surface neighborhoods
across multiple resolutions to obtain effective global structures as well as fine details.

varying topology is very challenging. Furthermore, it can introduce distortions
due to flattening as well as seams at surface cuts. Seams in particular make
learning using neighborhood-dependent operators (e.g., convolutions) difficult,
since neighboring features in UV space might not necessarily be neighbors in
the geodesic space. To avoid these issues, we instead generate surface texture
on the four-fold rotationally symmetric (4-RoSy) field parameterization from
Quadriflow [23], a method to remesh triangle meshes as quad meshes. A 4-RoSy
field is a set of tangent directions associated with a vertex where the neighboring
directions are parallel to each other by rotating one of them around their surface
normals by a multiple of 90◦. This can be realized as a quad-mesh, without seams
and with minimal distortions, near-regular faces, and preservation of geodesic
neighborhoods, making it very suitable for convolutional feature extraction (as
shown in Fig. 3). To facilitate a hierarchical processing of features on the surface
of the mesh, we precompute this 4-RoSy field representation of the mesh M at
multiple resolution levels to obtain quad meshes M1,M2, ..,Mn with face count
|M1|
4l−1 , with |M1| being the face count at the finest level (leftmost in Fig. 3).

3.2 Surface Operators

Given a 4-RoSy parameterized quad-mesh, we process features directly on its
surface by defining convolutions on the faces. A face convolution operates on a
face with feature xi and its neighboring faces’ features Ni = [y1,y2, ...] by:

FaceConv(xi,Ni) = wT
0 xi +

|Ni|∑
j=1

wT
j yj + b (1)

with xi ∈ RC0 , yj ∈ RC0 , learnable parameters w ∈ RC0×C1 , b ∈ RC1 , where
C0 and C1 are input and output feature channels respectively. We use a fixed
face neighborhood size |Ni| = 8, since the vast majority of the faces in the quad
mesh have a neighborhood of 8 faces, with very few singularities from Quadriflow
remeshing. In the rare case of singularities (see suppl. doc.), we zero-pad the

Texurify 7

faces so that the number of neighbors is always 8. Additionally, neighbors are
ordered anticlockwise around the face normal, with the face having the smallest
Cartesian coordinates (based on x, then y, then z) as the first face.

For aggregating features across mesh resolution hierarchy levels, we define
inter-hierarchy pooling and unpooling operators. The pooled features xj

l+1 are

given as xj
l+1 = agg

({
xi
l : i ∈ Fj

l+1

})
, where Fj

l+1 defines the set of face indices

of the finer layer l which are nearest to the j-th face of the coarser layer l + 1
in terms of a chamfer distance and with ‘agg’ as an aggregation operator. The

unpooled features are computed as: xj
l = x

F̂j
l

l+1, where F̂
j
l defines correspondence

of the j-th face of the fine layer to the coarse layer (in terms of minimal chamfer
distance).

3.3 Surface Texture GAN Framework

With our hierarchical surface parameterization and surface features operators,
we design a GAN framework that generates colors on the mesh surface that can
be trained using only a collection of images and untextured shapes without any
explicit 3D texture supervision.

Our generator takes a U-shaped encoder-decoder architecture. Face normals
and mean curvature are used as input features to the network. The encoder
is then designed to extract features from the mesh surface at different resolu-
tion levels. These features are processed through a series of FaceResNet blocks
(ResNet blocks with FaceConv instead of Conv2D) and inter-hierarchy pooling
layers as defined above. Features extracted at each level of the hierarchy are then
passed to the appropriate level of the decoder through U-Net skip connections.
This multi-resolution understanding is essential towards generating compelling
textures on a 3D shape, as the deeper features at coarse hierarchy levels enable
reasoning about global shape and textural structure, with finer hierarchy levels
allowing for generation of coherent local detail.

The decoder is inspired by the StyleGAN2 [26] generator, which has proven
to be a stable and efficient generative model in 2D domain. We thus use a
mapping network to map a latent code to a style code. Additionally, we upsam-
ple (via inter-hierarchy unpooling) and sum up RGB contributions at different
mesh hierarchy levels, analogous to StyleGAN2 upsampling and summation at
different image resolutions. Instead of the style-modulated Conv2D operators of
StyleGAN2 style blocks, we use style-modulated FaceConvs. In contrast to the
StyleGAN2 setting, where the generated image has a fixed structure, we aim to
generate textures on varying input 3D shape geometries. Therefore, we further
condition the style blocks on surface features extracted by the mesh encoder.
This is achieved by concatenating the features generated by the decoder at each
hierarchy level with the encoder features from the same level. The decoder out-
puts face colors for the highest resolution mesh (l = 1) representing the texture.

To enable training using only 2D image collections for texture supervision, the
resulting textured mesh is rendered as an image from multiple viewpoints using
a rasterization-based differentiable renderer, Nvdiffrast [29]. Note that we do not

8 Y. Siddiqui et al.

Fig. 4. The patch-consistency discriminator encourages global consistency in gener-
ated shape textures across multiple views. (a) While for real image data we are only
considering patches from the same view (since the 2D image dataset does not contain
multi-view data), we use patches from multiple views in the scenario of generated im-
ages. (b) Without patch-consistency discriminator rendered texture can end up having
inconsistent styles across viewpoints. Using the patch consistency discriminator pre-
vents this issue.

assume a known pose for the individual images in the real distribution; however,
we assume a distribution on the poses from which viewpoints are sampled. Im-
ages of the generated textured mesh are then rendered from views sampled from
the distribution, which are then critiqued by 2D convolutional discriminators.
We use two discriminators: the first, like conventional discriminators, considers
whether a single image comes from the real or generated distributions; the sec-
ond considers whether a set of rendered views from a generated textured shape is
consistent across the shape. Since we do not have access to multiple views of the
same sample from the real distribution, we consider multiple patches from a sin-
gle real image sample. For generated images, we then consider multiple patches
from different views as input to the patch-consistency discriminator. As patches
coming from the same view have a consistent style, the generated patches across
views are also encouraged to have a matching style. Operating at patch level is
important since for small patches it is harder to distinguish if the patches are
coming from the same or from different viewpoints. Fig. 4(b) shows the effect of
this patch-consistency discriminator, as considering only single views indepen-
dently can lead to artifacts where the front and back of a shape are textured
inconsistently, while the patch consistency across views leads to a globally con-
sistent textured output. Both discriminators use the architecture of the original
StyleGAN2 discriminators and use adaptive discriminator augmentation [24].

3.4 Implementation Details

We use a hierarchy of n = 6 quad-meshes with number of faces as (24576, 6144,
1536, 384, 96, 24) from finest to coarsest resolution respectively. Pooling layers
use a mean operation for aggregating features. During training, each mesh is
rendered at a resolution of 512 × 512 across 4 random viewpoints. The patch

Texurify 9

consistency discriminator uses patches cropped to a resolution of 64×64, with 4
patches extracted from each generated viewpoint, yielding a total of 16 patches
as input. The generator uses an empirically determined weighting of 10:1 for
losses coming from the image discriminator and the patch discriminator.
Our Texturify model is implemented using Pytorch and trained using Adam [27]
with learning rates of 1× 10−4, 2× 10−3 and 1× 10−3 for the encoder, decoder
and both discriminators respectively. We train on 2 NVIDIA A6000s for 70k
iterations (∼ 80 hours) until convergence. We plan to open source our model,
data and data-processing scripts.

4 Experiments

Data. We evaluate our method on 3D shape geometry from the ‘chair’ and
‘car’ categories of the ShapeNet dataset [6]. For chairs, we use 5,097 object
meshes split into 4,097 train and 1,000 test shapes, and 15,586 images from the
Photoshape dataset [41] which were collected from image search engines. For

Fig. 5.Qualitative results on ShapeNet chairs dataset trained with real images from the
Photoshape dataset. While methods producing textures in 3D space like SPSG [11],
EG3D [4] and TextureFields [37] produce blurry textures, UV based methods like
LTG [54] show artifacts at UV seams, specially for non-convex shapes like chairs. By
operating on the surface, our method can generate realistic and detailed textures.

10 Y. Siddiqui et al.

Fig. 6. Qualitative results on ShapeNet cars trained with real images from the Comp-
Cars dataset. Our method can generate realistic and diverse cars textures on varying
shape geometries like sedans, sportscars, SUVs and hatchbacks.

cars, we use 1,256 cars split into 956 train and 300 test shapes. We use 18,991
real images from the CompCars dataset [53] and use an off-the-shelf segmentation
model [28] to obtain foreground-background segmentations.

Evaluation Metrics. Our evaluation is based on common GAN image qual-
ity and diversity metrics. Specifically, we use the Frechet Inception Distance
(FID) [20] and Kernel Inception Distance (KID) [2] for evaluating the genera-
tive models. For each mesh, we render images of the textured shapes produced
by each method at a resolution of 256 × 256 from 4 random view points using
4 random latent codes, and evaluate these metrics against all available real im-
ages segmented from their background. Note that we do not have ground truth
textures available for the 3D shapes and specific style codes, thus, a classical
reconstruction metric (e.g., an ℓ1 distance) is not applicable.

Comparison against state of the art. Tab. 1 shows a comparison to state-of-
the-art methods for texture generation on 3D shape meshes. We compare with

Table 1. Comparison against state-of-the-art texture generation approaches on
ShapeNet chairs and cars learned on real-world 2D images.

Method Parameterization
Chairs Cars

KID×10−2↓ FID↓ KID×10−2↓ FID↓
Texture Fields [37] Global Implicit 6.06 85.01 17.14 177.15
SPSG [11] Sparse 3D Grid 5.13 65.36 9.59 110.65
UV Baseline UV 2.46 38.98 5.77 73.63
LTG [54] UV 2.39 37.50 5.72 70.06
EG3D [4] Tri-plane Implicit 2.15 36.45 5.95 83.11

Ours 4-RoSy Field 1.54 26.17 4.97 59.55

Texurify 11

Texture Fields [37], which generates textures as implicit fields around the object,
Yu et al. [54] which learns texture generation in the UV parameterization space,
and a modified version of EG3D [4] such that it uses a hybrid explicit-implicit
tri-plane 3D representation to predict textures for a given mesh conditioned on
its geometry. Additionally, we compare with the voxel-based 3D color generation
of SPSG [11]; since this was originally formulated for scan completion, we adopt
its differentiable rendering to our encoder-decoder architecture using 3D convo-
lutions instead of FaceConvs, with sparse 3D convolutions in the final decoder
layer. Finally, we also compare to a UV-based baseline which takes our network
architecture with 2D convolutions to learn directly in UV space rather than on
a 4-RoSy field. In contrast to these alternatives, our approach generates tex-
tures directly on the mesh surface, maintaining local geometric reasoning which
leads to more compelling appearance generation for both chair and car meshes
(see Fig. 5 and 6). The network architectures for our method and baselines are
detailed in the supplementary.

Which surface features are the most informative for texture genera-
tion? We evaluate a variety of different local surface features used as input to
the encoder network, see Tab. 2. In particular, we consider a case ‘None’, where
we do not use a surface feature encoder, thus, the surface StyleGAN generator is
reasoning only via the mesh neighborhood structure, a case where we input the
3D position of the face centroid, and the cases with local geometric neighbor-
hood characterizations using Laplacian, curvature, discrete fundamental forms,
and normals as input features. We find that using surface features help signif-
icantly over using no features (‘None’). Further, features dependent on surface
geometry like curvature, fundamental forms perform better than positional fea-
tures like absolute 3D position and Laplacian, with a combination of normals
and curvature providing the most informative surface descriptor for our texture
generation (see Fig. 7).

What is the impact of the patch-consistency discriminator? When a
patch consistency discriminator is not used (see Fig. 4), our method can end
up generating textures that might look valid from distinct view points, but
as a whole incorporate different styles. Using a discriminator that considers
patch consistency across multiple different views enables more globally coherent
texture generation (Fig. 4, right), also reflected in improved KID and FID scores
(Tab. 2, last two lines).

What is the effect of the mesh resolution on the quality?We compare our
base method with 6 hierarchy levels with number of faces as (24576, 6144, 1536,
384, 96, 24) against our method with 5 hierarchy levels with number of faces as
(6144, 1536, 384, 96, 24). As seen in Tab. 2 and Fig. 8(a), the increased mesh
resolution helps to produce higher-quality fine-scale details, resulting in notably
improved performance. Even higher resolutions on our setup were prohibitive in
memory consumption.

How does the rendered view resolution affect results? Tab. 2 and Fig. 8(b)
show the effect of several different rendering resolutions during training: 64, 128,

12 Y. Siddiqui et al.

Fig. 7. Effect of different input surface features. Using no surface features (i.e. no sur-
face encoder, only the decoder) produces poor textures since the decoder has limited
understanding of the shape. 3D location based features such as position and Laplacian
suffer from the inability to effectively align texture patterns with geometric ones. Cur-
vature and fundamental forms introduce spurious line effects due to strong correlation
with curvature. Surface normal are quite effective, and are further stabilised when used
along with curvature.

256, and 512. Increasing the rendering resolution results in improved quality
enabling more effective generation of details.

Does rendering from multiple viewpoints during training help? We
consider a varying number of viewpoints rendered per object during each op-
timization step while training in Tab. 2, using 1, 2, and 4 views. We see that
using more views continues to help when increasing from 1 to 2 to 4. Specifically,
we see that using multiple views helps avoid artifacts that appear in the mesh
across vastly different viewpoints as shown in Fig. 8(c). Note that the multi-
view setting also allows patch consistency discriminator to generate consistent
textures. We use 4 views during training since increasing the number of views
has a decreasing marginal benefit as views will become more redundant.

Learned texture latent space behavior. For a fixed shape, our learned latent
space is well behaved with a smooth interpolation yielding valid textures, as
shown in Fig. 10. Furthermore, the learned latent space is consistent in style
across different shapes, i.e. the same code represents a similar style across shapes
(Fig. 9), and can be used, for example, in style transfer applications.

Limitations. While our approach takes a promising step towards texture gen-
eration on shape collections, some limitations remain. Since our method uses a
real image distribution that comes with lighting effects, and our method does
not factor out lighting, the textures learned by our method can have lighting
effects baked in. Further, the resolution of the texture generated by our method
is limited by the number of faces used at the highest level of the 4-RoSy param-

Texurify 13

Fig. 8. (a) Increased mesh resolution enables synthesis of higher quality texture. (b)
Higher rendering resolution during training helps synthesize more details. (c) Using
a single viewpoint per mesh for discrimination can introduce artifacts in the texture
across different regions of the mesh. In contrast, using multiple views instead encourages
more coherent textures across views.

Fig. 9. The latent texture space is consistent across different shape geometry, such
that the same latent code gives a similar texture style for different geometries.

14 Y. Siddiqui et al.

Table 2. Ablations on geometric input features, mesh and image resolution, number
of views, and the patch-consistency discriminator for our method on ShapeNet chairs.

Input Feature Mesh-Res Render-Res # views Patch D KID×10−2↓ FID↓
None 24K 512 4 ✓ 2.53 37.95
Position 24K 512 4 ✓ 2.10 34.45
Laplacian 24K 512 4 ✓ 2.05 34.18
Curvatures 24K 512 4 ✓ 1.79 29.86
Fundamental Forms 24K 512 4 ✓ 1.80 30.91
Normals 24K 512 4 ✓ 1.68 27.73
Normals + Curvature 6K 512 4 ✓ 2.01 33.95
Normals + Curvature 24K 64 4 ✓ 2.35 39.32
Normals + Curvature 24K 128 4 ✓ 1.93 32.22
Normals + Curvature 24K 256 4 ✓ 1.54 26.99
Normals + Curvature 24K 512 1 ✓ 1.67 27.83
Normals + Curvature 24K 512 2 ✓ 1.56 26.95
Normals + Curvature 24K 512 4 X 1.64 27.22

Normals + Curvature 24K 512 4 ✓ 1.54 26.17

Fig. 10. The texture latent space learned by our method produces smoothly-varying
valid textures when traversing across the latent space for a fixed shape.

eterization, whereas learned implicit functions or explicit subdivison at these
highest-level faces could potentially capture even higher texture resolutions.

5 Conclusion

We have introduced Texturify, a new approach to generate textures on mesh
surfaces from distinct collections of 3D shape geometry and 2D image collections,
i.e., without requiring any correspondences between 2D and 3D or any explicit 3D
color supervision. Our texture generation approach operates directly on a given
mesh surface and synthesizes high-quality, coherent textures. In our experiments
we show that the 4-RoSy parameterization in combination with face convolutions
using geometric features as input outperforms the state-of-the-art methods both
quantitatively, as well qualitatively. We believe that Texturify is an important
step in 3D content creation through automatic texture generation of 3D objects
which can be used in standard computer graphics pipelines.

Texurify 15

Acknowledgements. This work was supported by the Bavarian State Min-
istry of Science and the Arts coordinated by the Bavarian Research Institute
for Digital Transformation (bidt), a TUM-IAS Rudolf Mößbauer Fellowship, an
NVidia Professorship Award, the ERC Starting Grant Scan2CAD (804724), and
the German Research Foundation (DFG) Grant Making Machine Learning on
Static and Dynamic 3D Data Practical. Apple was not involved in the evalua-
tions and implementation of the code. Further, we thank the authors of LTG [54]
for assistance with their code and data.

References

1. Azinović, D., Martin-Brualla, R., Goldman, D.B., Nießner, M., Thies, J.: Neural
rgb-d surface reconstruction. arXiv preprint arXiv:2104.04532 (2021) 2

2. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans.
arXiv preprint arXiv:1801.01401 (2018) 10

3. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: arXiv
(2020) 2, 4

4. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., Mello, S.D., Gallo,
O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., Wetzstein, G.: Efficient
Geometry-aware 3D Generative Adversarial Networks. ArXiv (2021) 4, 9, 10, 11,
21, 22

5. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: Periodic
implicit generative adversarial networks for 3D-aware image synthesis. In: CVPR
(2021) 2, 4

6. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet:
An Information-Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Technological Institute at
Chicago (2015) 2, 9

7. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d
shape reconstruction and completion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 6970–6981 (2020) 2

8. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d
shape reconstruction and completion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 6970–6981 (2020) 3

9. Chibane, J., Pons-Moll, G.: Implicit feature networks for texture completion from
partial 3d data. In: European Conference on Computer Vision. pp. 717–725.
Springer (2020) 3

10. Dai, A., Diller, C., Nießner, M.: Sg-nn: Sparse generative neural networks for self-
supervised scene completion of rgb-d scans. In: CVPR. pp. 849–858 (2020) 2

11. Dai, A., Siddiqui, Y., Thies, J., Valentin, J., Nießner, M.: Spsg: Self-supervised
photometric scene generation from rgb-d scans. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1747–1756 (2021)
2, 3, 9, 10, 11, 21

12. Fu, H., Jia, R., Gao, L., Gong, M., Zhao, B., Maybank, S., Tao, D.: 3d-future: 3d
furniture shape with texture. International Journal of Computer Vision pp. 1–25
(2021) 2

16 Y. Siddiqui et al.

13. Gadelha, M., Maji, S., Wang, R.: 3D shape induction from 2D views of multiple
objects. In: 3DV (2017) 4

14. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields
for monocular 4d facial avatar reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8649–8658 (2021) 4

15. Gu, J., Liu, L., Wang, P., Theobalt, C.: StyleNeRF: A style-based 3D-aware gen-
erator for high-resolution image synthesis. ArXiv (2021) 4

16. Gu, S., Bao, J., Chen, D., Wen, F.: Giqa: Generated image quality assessment. In:
European Conference on Computer Vision. pp. 369–385. Springer (2020) 20

17. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
a network with an edge. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)
4

18. Hao, Z., Mallya, A., Belongie, S., Liu, M.Y.: GANcraft: Unsupervised 3D neural
rendering of minecraft worlds. In: ICCV (2021) 4

19. Henzler, P., Mitra, N.J., Ritschel, T.: Escaping Plato’s cave: 3D shape from adver-
sarial rendering. In: ICCV (2019) 4

20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017) 10

21. Huang, J., Thies, J., Dai, A., Kundu, A., Jiang, C., Guibas, L.J., Nießner, M.,
Funkhouser, T., et al.: Adversarial texture optimization from rgb-d scans. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 1559–1568 (2020) 3

22. Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nießner, M., Guibas, L.J.: Tex-
turenet: Consistent local parametrizations for learning from high-resolution signals
on meshes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4440–4449 (2019) 4, 19, 20, 21

23. Huang, J., Zhou, Y., Niessner, M., Shewchuk, J.R., Guibas, L.J.: QuadriFlow:
A Scalable and Robust Method for Quadrangulation. Computer Graphics Forum
(2018). https://doi.org/10.1111/cgf.13498 5, 6

24. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training
generative adversarial networks with limited data. Advances in Neural Information
Processing Systems 33, 12104–12114 (2020) 8

25. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. CVPR (2019) 3

26. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. CVPR (2020) 5, 7

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015) 9

28. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: Image segmentation as render-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 9799–9808 (2020) 10

29. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. TOG (2020) 7

30. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional
neural networks on riemannian manifolds. In: Proceedings of the IEEE interna-
tional conference on computer vision workshops. pp. 37–45 (2015) 4

31. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–
4470 (2019) 2

https://doi.org/10.1111/cgf.13498

Texurify 17

32. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: Text-driven
neural stylization for meshes. arXiv preprint arXiv:2112.03221 (2021) 3, 22, 24

33. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: Un-
supervised learning of 3D representations from natural images. In: ICCV (2019)
4

34. Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.L., Mitra, N.J.: BlockGAN:
Learning 3D object-aware scene representations from unlabelled images. In:
NeurIPS (2020) 4

35. Niemeyer, M., Geiger, A.: GIRAFFE: Representing scenes as compositional gen-
erative neural feature fields. In: CVPR (2021) 4

36. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. CVPR (2021) 4

37. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture
fields: Learning texture representations in function space. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4531–4540 (2019)
2, 3, 9, 10, 11, 20, 21

38. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman,
I.: Stylesdf: High-resolution 3d-consistent image and geometry generation. ArXiv
(2021) 4

39. Pan, X., Xu, X., Loy, C.C., Theobalt, C., Dai, B.: A shading-guided generative
implicit model for shape-accurate 3d-aware image synthesis. NeurIPS (2021) 2, 4

40. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: CVPR (2019) 2

41. Park, K., Rematas, K., Farhadi, A., Seitz, S.M.: Photoshape: Photorealistic ma-
terials for large-scale shape collections. arXiv preprint arXiv:1809.09761 (2018) 3,
9

42. Pavllo, D., Kohler, J., Hofmann, T., Lucchi, A.: Learning generative models of
textured 3d meshes from real-world images. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 13879–13889 (2021) 4

43. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. arXiv preprint arXiv:2003.04618 2 (2020) 2

44. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
pp. 8748–8763. PMLR (2021) 3, 22

45. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: Generative radiance fields
for 3D-aware image synthesis. In: NeurIPS (2020) 2, 4

46. Siddiqui, Y., Thies, J., Ma, F., Shan, Q., Nießner, M., Dai, A.: Retrievalfuse:
Neural 3d scene reconstruction with a database. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 12568–12577 (2021) 2

47. Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J.B.,
Freeman, W.T.: Pix3d: Dataset and methods for single-image 3d shape modeling.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
2

48. Sun, Y., Liu, Z., Wang, Y., Sarma, S.E.: Im2avatar: Colorful 3d reconstruction
from a single image. arXiv preprint arXiv:1804.06375 (2018) 2

49. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense
prediction in 3d. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3887–3896 (2018) 4

18 Y. Siddiqui et al.

50. Verma, N., Boyer, E., Verbeek, J.: Feastnet: Feature-steered graph convolutions
for 3d shape analysis. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 2598–2606 (2018) 4

51. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a prob-
abilistic latent space of object shapes via 3D generative-adversarial modeling. In:
NIPS (2016) 4

52. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. arXiv preprint arXiv:2201.08845 (2022) 4

53. Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-
grained categorization and verification. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3973–3981 (2015) 10

54. Yu, R., Dong, Y., Peers, P., Tong, X.: Learning texture generators for 3d shape
collections from internet photo sets (2021) 3, 9, 10, 11, 15, 21

55. Zhou, P., Xie, L., Ni, B., Tian, Q.: CIPS-3D: A 3D-Aware Generator of GANs
Based on Conditionally-Independent Pixel Synthesis. ArXiv (2021) 4

56. Zhou, Q.Y., Koltun, V.: Color map optimization for 3d reconstruction with con-
sumer depth cameras. ACM Transactions on Graphics (ToG) 33(4), 1–10 (2014)
3

57. Zhu, J.Y., Zhang, Z., Zhang, C., Wu, J., Torralba, A., Tenenbaum, J.B., Freeman,
W.T.: Visual object networks: Image generation with disentangled 3D representa-
tions. In: NeurIPS (2018) 4

Texurify 19

A Network Architecture

A detailed description of the network for our method can be found in Fig. 11 and
12. Fig. 11 details the encoder, while Fig. 12 displays the StyleGAN2 inspired
decoder. Both are based on our 4-RoSy parametrization and the FaceConv and
pooling operations presented in the main paper.

Singularities. Singularities are vertices on a quad mesh that do not have a
valancy of 4. Our method uses zero-padding on faces with singularity vertices
to enforce a fixed size neighborhood. Quad meshes parameterized by quadriflow
have few singularities. Specifically, we get 0.89% vertices with singularities for
Chair category, and 1.95% for Car category. This is comparable to the proportion
of pixel locations that need padding in a 256× 256 image (1.56%).

Fig. 11. Encoder architecture. (a) The encoder takes in face normals and curvature
at the finest resolution of the hierarchy and extracts features using FaceResNet blocks
(b). Features are extracted at all levels of the hierarchy using inter hierarchy pooling
and are passed on to the decoder in a U-Net style with skip connections (see Fig. 12).
(b) A FaceResNet block is a ResNet block that uses FaceConv instead of Conv2D, and
therefore can operate on surface of the mesh.

FaceConvs. As described in the main paper, our approach uses FaceConvs as
operator on a 4-RoSy surface. A similar 4-RoSy parameterization has been used
in TextureNet [22] for the segmentation of point clouds. Instead of our Face-
Convs, which use Cartesian ordering to resolve the 4 way ambiguity, TextureNet
introduced TextureConvs a 4-RoSy surface convolutional operator. In Table. 3,
we modify our proposed method and replace the FaceConvs with these Texture-
Convs. We observe that while TextureConvs work reasonably well for the chair
category, it struggles with the placement of headlights and the front grill for the
car category (Fig. 13).

20 Y. Siddiqui et al.

Fig. 12. Decoder architecture. (a) The decoder is inspired by the StyleGAN2 gener-
ator, but rather than operating on a 2D image hierarchy, it operates on quad mesh
hierarchy. A learned noise over a cube, which is always the coarsest resolution with 24
faces in the hierarchy, is upsampled to a specific shape through a series of synthesis
blocks that take in surface features coming from the encode and the style codes. (b)
A synthesis block concatenates features coming from the encoder with the previous
synthesis blocks generated features, and passes them through synthesis layers, one of
which unpools them to a finer level in the hierarchy. Features generated at the current
level are also decoded to an RGB texture and added to the unpooled RGB texture
coming from previous layer. (c) Synthesis layer applies a FaceConv with weights mod-
ulated by a style code to the input features, and optionally unpools and adds noise to
it.

Table 3. Comparison against a modified version of our network that uses Texture-
Conv [22] instead of FaceConvs on ShapeNet chairs and cars learned on real-world 2D
images. Our proposed FaceConvs lead to significantly better geometry-aware texture
synthesis, especially, on the car dataset (see Fig. 13).

Method
Chairs Cars

KID×10−2↓ FID↓ KID×10−2↓ FID↓
TexureConv [22] 1.88 31.67 6.13 80.10
Ours 1.54 26.17 4.97 59.55

B Baseline Methods

We describe the experimental setup for the various baseline comparisons with
state-of-the-art texture generation, along with an additional quantitative com-
parison on the Generated Image Quality Assessment (GIQA) metric [16] in
Tab. 4 and additional qualitative comparisons in Fig. 15 and 16. The methods
differ mainly in their parametrization as discussed below.

TextureFields. For TextureFields [37], we use the official code and configura-
tion of its GAN variant. We found that training with purely real-world images
made the network unstable, so we used a mix (with a probability p = 0.5) of
real images and synthetic renders with ShapeNet textures.

Texurify 21

Fig. 13. Comparison with a modified version of our network using texture convolutions
from TextureNet [22].

Table 4. Comparison against state-of-the-art texture generation approaches on
ShapeNet chairs and cars learned on real-world 2D images.

Method Parameterization
GIQA×10−2↑
Chairs Cars

Texture Fields [37] Global Implicit 6.29 5.14
SPSG [11] Sparse 3D Grid 6.38 7.19
UV Baseline UV 7.29 7.84
LTG [54] UV 7.39 7.90
EG3D [4] Tri-plane Implicit 7.58 7.85

Ours 4-RoSy Field 7.73 7.99

SPSG. For the SPSG [11] inspired baseline, we use the exact same architecture
as ours (Fig. 11 and 12), except that instead of surface, the networks now operate
in a 3D grid. A TSDF grid at the finest resolution of 1283 is input to the encoder,
with features extracted and pooled using 3D ResNet blocks (ResNet block with
Conv3D) and trilinear downsampling operators. The decoder uses modulated
Conv3Ds instead of modulated FaceConvs and unpooling is performed using
trilinear upsampling of features. The last synthesis block uses sparse convolutions
because of memory constraints. The decoder outputs a 3D grid of RGB colors
instead of per face RGB colors. This color grid is rendered to an image with the
shape’s TSDF using SPSG’s TSDF differentiable rendering.

UV-Space. For the UV baseline, we again use broadly the same architecture
as ours. Here, instead of operating on surface using 4-RoSy parameterization,
we operate on the surface using UV parameterization. Specifically, we compute
the UV maps for the shapes in a fashion similar to LTG [54], i.e. using 6 views
(top, bottom, left, right, front, back) around the object. Input to the encoder are
the normal and curvature atlas maps. Features are extracted using vanilla 2D
ResNet blocks at multiple resolutions and passed to the decoder. The decoder is a
regular 2D StyleGAN conditioned (through concatenation like ours) on features
coming from encoder. It predicts texture atlases which are mapped to the shape
during differentiable rendering. This pipeline differs from LTG as it does not
use SPADE-IN blocks for conditioning on silhouettes but instead conditions on

22 Y. Siddiqui et al.

surface features extracted via the encoder. Further, this baseline synthesises a
single texture atlas unlike the multiple texture atlases in LTG.

EG-3D. Finally, the EG3D [4] inspired baseline architecture is shown in Fig. 14.
Here, given an input mesh and its 3D TSDF representation, a StyleGAN2 net-
work generates a triplane representation, while a 3D TSDF encoder encodes a
3D feature grid. An MLP decoder is then used to query face colors point in space,
based on the features projected on the triplane and the feature on the grid at
the query point. The mesh with it’s face colors is then differentiably rendered
and critiqued through a discriminator.

Fig. 14. EG3D [4] inspired baseline architecture. A StyleGAN2 generator outputs a
triplane representation with style conditioned on a mesh code. The input mesh repre-
sented as a TSDF grid is additionally encoded into an 83 feature volume. For points
on the mesh surface, features are sampled from the Triplane and 3D feature grid, con-
catenated, and decoded via an MLP to get face colors. The resulting mesh with face
colors is differentiably rendered and critiqued by a discriminator.

C Discussion & Outlook

Our method learns to texture 3D objects from in-the-wild image datasets. It
exhibits consistent global and local structural details and can also be used for
text-based texture synthesis. To this end, we adapted the Text2Mesh [32] frame-
work to take advantage of our texture model. Specifically, we optimize the latent
code passed to our pretrained generator using an evolutionary algorithm such
that the CLIP [44] scores between query and the renders are maximized. In
Fig. 17, we show a comparison to the original Text2Mesh approach, where we
only optimize for the colors on the surface of the mesh. Note that we disable
the geometry optimization for this experiment. While Text2Mesh gives good
textures when the queries specify a small scale texture description like “brick”
or “cactus”, it fails to synthesize textures in a semantically consistent way for

Texurify 23

Fig. 15. Qualitative results on ShapeNet chairs dataset trained with real images from
the Photoshape dataset

Fig. 16. Results on ShapeNet cars trained with real images from the CompCars
dataset.

24 Y. Siddiqui et al.

broader queries like “brown chair” or “blue sedan car”. For instance, in the case
of the car mesh, Text2Mesh synthesizes smaller images of cars on the surface of
the car mesh. In contrast, our method generates semantically consistent textures,
also on a higher abstraction level.

Fig. 17. Comparison with Text2Mesh [32] with queries “brown chair” (top) and “blue
sedan car” (bottom).

While we already see a wide applicability of our method, there are limitations
that we want to address in future work. As we learn from real world data, we also
capture lighting effects, e.g., shadows or specular highlights in our texture. These
‘baked-in’ effects might look reasonable from one view-point, but view-dependent
effects like specular highlights should not be synthesized in the texture since
they are implausible from other view-points (see Fig. 18). Therefore, additional
effort has to be invested to disentangle these effects from the actual diffuse
texture. In addition, we think that combining our texture estimation approach
that estimates per face colors, with local texture MLPs similar to IF-Nets or
ConvOcc (which could predict a color for each point on a face) is an interesting
avenue for future research.

Fig. 18. Since our method does not model illumination, the textures produced by our
method can end up replicating the lighting effects found in the training images.

	Texturify: Generating Textures on 3D Shape Surfaces

